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Abstract

The size-dependent response of metallic microwires under monotonic and cyclic torsion is modeled

using a reduced-order strain gradient crystal plasticity approach involving a single scalar-valued mi-

cromorphic variable. It is compared with the response predicted by the CurlF p model proposed in

(Kaiser and Menzel, 2019a), which is based on the complete dislocation density tensor. It is shown that

in cyclic non-uniform plastic deformation processes, the gradient of the scalar-valued internal vari-

able in the reduced-order model predicts isotropic hardening in contrast to kinematic-type hardening

produced by the CurlF p model due to a dislocation-induced back-stress component. The arising size

effect in the monotonic torsion tests is described by the normalized torque T/R3 as a function of the

ratio of the radius of the microwire R and characteristic length scale `. In the size-dependent domain,

characterized by an inflection point on the corresponding curve, the scaling law T/R3 ∼ (R/`)n can

be identified, and explicit relations are found for the power n. The relative evolution of SSD and GND

densities during torsion is described in detail.

Keywords: Gradient crystal plasticity; Reduced-order model; CurlF p model; Microwire torsion

tests; Size effect; Scaling law; Micromorphic crystal plasticity
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1. Introduction

In classical continuum crystal plasticity models, the hardening behavior can be described by in-

corporating the internal variables related to scalar dislocation densities (McDowell, 2008). There

are mainly two types of dislocation families to be considered. The dislocations generated during the

plastic deformation through random trapping with each other are called Statistically Stored Disloca-25

tions (SSDs). On the other hand, Geometrically Necessary Dislocations (GNDs) are required for the

compatible deformation of the crystal under inhomogeneous plastic deformation processes (Ashby,

1970). In classical continuum crystal plasticity models, the contribution of SSD density ρS to strain

hardening is considered to be dominant compared to the GND density, ρG. These classical SSD-based

crystal plasticity models do not usually feature a characteristic length scale and hence cannot predict30

experimentally observed size effects documented in (Fleck and Hutchinson, 1993; Fleck et al., 1994;

Gao et al., 1999; Stölken and Evans, 1998). The gradient of shear strain is associated with the storage

of GNDs. The GNDs control the material strain hardening along with SSDs, and accounting for

the latter in the model formulation naturally gives rise to a characteristic length scale according to

(Ashby, 1970; Acharya and Bassani, 2000; Gurtin, 2002; Cordero et al., 2012).35

The GNDs are associated with the incompatible part of plastic deformations and can be quantified

in terms of the dislocation density tensor (Nye, 1953; Bilby et al., 1955).The introduction of complete

dislocation density tensor into the constitutive framework intrinsically gives rise to latent kinematic

hardening (Steinmann, 1996; Bayley et al., 2006). Moreover, the introduction of the dislocation

density tensor in the free energy density function is motivated on physical grounds as opposed to40

purely phenomenological modeling approaches (Wulfinghoff et al., 2015; Kaiser and Menzel, 2019b,a).

The micromorphic theory described in (Eringen, 1999) relies on the introduction of a non-

symmetric second-order tensor of microdeformation as the additional degree of freedom accounting
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for the rotation and distortion of a triad of directors attached to the microstructure. The micromor-

phic approach has been extended to other types of mechanical variables, including plastic strain and45

damage variables by Forest (2009, 2016). It was used to investigate strain localization phenomena

by Dillard et al. (2006); Anand et al. (2012); Mazière and Forest (2015); Brepols et al. (2017) and

to predict size effects in crystal plasticity by Cordero et al. (2010); Aslan et al. (2011); Wulfinghoff

et al. (2013); Ling et al. (2018); Scherer et al. (2019, 2020); Ryś et al. (2020). In contrast to Eringen’s

original micromorphic theory, the reduced-order micromorphic theory relies on a single scalar-valued50

additional degree of freedom at each material point, akin to accumulated plastic strain or slip (Wulf-

inghoff and Böhlke, 2012; Wulfinghoff et al., 2013; Erdle and Böhlke, 2017; Ling et al., 2018; Scherer

et al., 2019). The reduced-order micromorphic crystal plasticity theory introduces a scalar microslip

variable related to accumulated plastic slip and its gradient as the arguments of the free energy density

function. The quasi-equality between the microslip variable and accumulated plastic slip is ensured55

by the coupling modulus Hχ, playing the role of a penalty parameter. Usually, a high value of the

coupling modulus Hχ ensures that the microslip variable and accumulated plastic slip almost coincide.

This micromorphic model with high values of the coupling modulus can be interpreted as a numerical

method to implement a gradient plasticity model; see for instance (Anand et al., 2012). Numerical dif-

ficulties associated with penalty methods can be overcome using the Lagrange multiplier-based model60

introduced by Zhang et al. (2018) and Scherer et al. (2020). The latter makes use of a Lagrange mul-

tiplier λ, a nodal degree of freedom in addition to the micromorphic one, in order to enforce equality

between microslip variable and accumulated plastic slip (Scherer et al., 2020).

Gradient plasticity and micromorphic models involving the gradient or rotational part of the plastic

deformation tensor generally require a large number of additional internal variables and nodal degrees65

of freedom leading to a significant increase in the computational cost. For instance, the full-order

microcurl model proposed by Cordero et al. (2010) and the gradient plasticity model by Panteghini

and Bardella (2018) require at least 9 (3D) and 12 (2D) additional nodal degrees of freedom. The

complexity in the numerical implementation further increases the computational modeling efforts. The

differences in the formulation of various gradient plasticity theories result in distinct and sometimes70

non-physical responses, which raises the necessity of comparing different gradient plasticity models

(Peerlings et al., 2001). A comparison between five gradient-enhanced phenomenological approaches

in a continuum damage setting can be found in (Geers et al., 2000), and between implicit and explicit

gradient formulations in (Peerlings et al., 2001). The computational advantages of a gradient plasticity

formulation including the equivalent plastic strain as an additional degree of freedom are investigated75

in (Wulfinghoff and Böhlke, 2012). Moreover, the gradient crystal plasticity theory proposed by

Gurtin (2002) is used in (Bittencourt et al., 2003) to explore to which extent the results from the

discrete dislocation simulations can be reproduced. It is found that the gradient plasticity reproduces

the behavior seen in the discrete dislocation simulations in remarkable detail. However, only a few

studies are dedicated to the comparison between various gradient crystal plasticity approaches and80

the determination of the advantages and drawbacks of the many existing theories. For instance, the
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Fig. 1: Schematic log-log plot characterizing the effect of the ratio of the microwire radius R to the characteristic length

scale ` on the normalized torque T/R3: size effect with bounded (solid line) and unbounded (dashed line) asymptotic

regimes, power law in the transition domain (dotted line), n is the slope of the size dependent domain and i is the

inflection point of the curve.

detailed comparison of the micropolar crystal plasticity model (Mayeur et al., 2011) and the gradient

crystal plasticity model proposed by Gurtin (2002) can be found in (Mayeur and McDowell, 2014).

It is therefore the objective of this work to compare a computationally efficient Lagrange multiplier-

based model that involves a single scalar-valued variable with the CurlF p model proposed in (Kaiser85

and Menzel, 2019a) for monotonic and cyclic microwire torsion tests. All models and simulations

are presented and performed within the finite deformation framework. The scaling law T/R3 ∝
(R/`)n for the microwire torsion tests, which characterizes the effect of the ratio of the radius of the

microwire R and characteristic length scale ` on the normalized torque T/R3 using both reduced-order

micromorphic and Lagrange multiplier-based models is obtained. Such scaling laws were derived for90

the periodic shearing of a laminate at small strains and small rotations in (Cordero et al., 2010; Ryś

et al., 2020). Fig. 1 shows schematically the effect of R/` on the normalized torque T/R3, which is

found in the present work. The main features of the diagram are the inflection point i and the slope

n of the size-dependent domain. For small values of R/`, a bounded (for the micromorphic model), or

an unbounded (for the Lagrange multiplier-based model), asymptotic behavior can be obtained. At95

large values of R/`, the observed asymptotic behavior corresponds to the size-independent response

of classical crystal plasticity models. More details will also be given regarding the evolution of the

fields of plastic strain, SSD and GND densities during torsion.

The outline of the paper is as follows: In section 2, the constitutive framework for rate-dependent

crystal plasticity is presented. The main features of the reduced-order micromorphic and the Lagrange100

multiplier-based models are presented in section 3. In section 4, the constitutive framework of the

CurlF p model and the equivalence between the higher-order modulus A from the Lagrange multiplier-

based model and the material parameter HD from the CurlF p model are demonstrated in the single-

slip problem. Section 5 is dedicated to the simulation of representative boundary-value problems,

and size effects predicted by the Lagrange multiplier-based model are compared to the CurlF p model105
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predictions for monotonic and cyclic microwire torsion tests. Concluding remarks follow in section 6.

The following notations are used in this contribution: Underlined A and under-waved bold A∼

characters are used to denote first-order and second-order tensors, respectively. The transpose, inverse

and time derivative are denoted by A∼
T , A∼

−1 and Ȧ∼ . Simple and double contractions are understood

in the sense a · b = aibj and A∼ : B∼ = AijBij . Moreover, the following tensor products are used:110

a ⊗b = aibie j⊗e j , A∼ ⊗B∼ = AijBkle i⊗e j⊗e k⊗e l, A∼⊗B∼ = AikBjle i⊗e j⊗e k⊗e l and A∼⊗B∼ =

AilBjke i⊗e j⊗e k⊗e l. The curl of a second-order tensorA∼ with respect to the reference configuration

is defined as (CurlA∼ )ij = εipqAjq,p e i ⊗ e j , with εipq denoting the coefficients of the permutation

tensor. Similarly, the spin operator which relates the axial vector to the corresponding skew-symmetric

second-order tensor in the reference configuration is defined as (SpinN )ij = −εijqNq e i ⊗ e j .115

2. Constitutive framework

2.1. Kinematics

A finite deformation framework is used throughout the work, which is based on the multiplicative

decomposition of the total deformation gradient F∼ into an elastic part F∼
e and a plastic part F∼

p, i.e.

F∼ = F∼
e · F∼ p (see, e.g., Lee and Liu (1967); Willis (1969); Rice (1971); Mandel (1973); Teodosiu and

Sidoroff (1976)). The volumetric mass densities with respect to the reference, the intermediate and

the current configuration are ρ0, ρ# and ρ, respectively, and expressed as

J = det(F∼ ) =
ρ0
ρ
, Je = det(F∼

e) =
ρ#
ρ
, Jp = det(F∼

p) =
ρ0
ρ#

. (1)

Moreover, it is assumed that the plastic flow is incompressible such that

Jp = detF∼
p = 1, Je = J = detF∼ . (2)

The multiplicative decomposition of F∼ leads to the partition of the spatial velocity gradient L∼ into

an elastic part L∼
e and a plastic part L∼

p as follows:

L∼ = Ḟ∼ · F∼−1 = Ḟ∼
e · F∼ e−1 + F∼

e · Ḟ∼ p · F∼ p−1 · F∼ e−1 = L∼
e +L∼

p. (3)

The elastic Green–Lagrange strain tensor E∼
e
GL

is introduced as

E∼
e
GL

=
1

2
(F∼

eT · F∼ e − 1∼), (4)

with 1∼ denoting the second-order identity tensor.

2.2. Rate-dependent crystal plasticity model

Most rate-independent crystal plasticity theories lead to an ill-conditioned problem regarding the

selection of active slip systems and the increments of shear on the active slip systems as emphasized

in (Anand and Kothari, 1996; Miehe et al., 1999; Busso and Cailletaud, 2005). One way to overcome

this difficulty is to work within a rate-dependent framework. Here, a rate-dependent overstress-type
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flow rule is adopted to facilitate the determination of the set of active slip systems. It is based on a

Schmid-type yield function defined as

fr = |τ r| − τ rc , (5)

involving the resolved shear stress τ r on the slip system r, which is the driving force to trigger plastic

slip, and the corresponding critical resolved shear stress τ rc . The resolved shear stress τ r on slip system

r is defined as

τ r = Π∼
M : (m r ⊗ n r), with Π∼

M = JeF∼
eT · σ∼ · F∼−eT , (6)

where Π∼
M is the Mandel stress tensor defined with respect to the intermediate configuration, m r is

the slip direction, n r is the slip normal and σ∼ is the Cauchy stress tensor. The shear strain rate γ̇r

on each slip system r is then given by the following rate-dependent flow rule

γ̇r = γ̇0

〈
fr

τ0

〉m
sign (τ r) , (7)

with Macauley brackets < • > denoting the positive part of •, γ̇0 is the reference strain rate and m120

is a material parameter controlling the rate sensitivity of the material response– i.e. high values of γ̇0

and m result in a low rate-sensitivity. Moreover, τ0 is the initial critical resolved shear stress.

Furthermore, the plastic deformation rate is the result of slip processes on N distinct slip systems,

i.e.

Ḟ∼
p · F∼ p−1 =

N∑
r=1

γ̇r(m r ⊗ n r). (8)

3. Reduced-order gradient crystal plasticity theory

3.1. Micromorphic model

According to the micromorphic approach, the variables carrying the targeted gradient effects are125

selected from the available state variables. They can be tensors of any rank (Forest, 2016). The model

is called reduced-order micromorphic when the micromorphic variable is a scalar quantity, as done in

the model proposed by Ling et al. (2018) which is summarized in this section.

The material points are defined by the position vector X in the reference configuration Ω0 and

the position vector x in the current configuration Ωt. They possess two types of degrees of freedom:

the displacement vector u (X , t) = x −X and the micromorphic scalar microslip variable γχ(X , t).

The associated scalar internal variable is the cumulative plastic strain γcum introduced as

γcum =

∫ t

0

N∑
r=1

|γ̇r|dt. (9)

In the present formulation, the set of degrees of freedom (DOF) is, therefore

DOF = {u , γχ}. (10)

The gradients of the degrees of freedom with respect to the reference configuration are

H∼ =
∂u

∂X
= Gradu , K =

∂γχ
∂X

= Grad γχ. (11)
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The static balance equations and Neumann boundary conditions expressed with respect to the refer-

ence configuration are as follows:

DivP∼ = 0 and DivM − S = 0, ∀X ⊂ Ω0, (12)

T = P∼ ·N and M = M ·N , ∀X ⊂ ∂Ω0, (13)

with P∼ being the Boussinesq (first Piola–Kirchhoff) stress tensor related to the Cauchy stress tensor

σ∼ by P∼ = Jσ∼F∼
−T , S and M are the generalized stresses, T is traction vector, M is the generalized130

surface traction and N the outward unit normal vector at a boundary of the reference body.

The cumulative plastic strain γcum is related to the microslip variable γχ via the relative plastic

strain e(X , t) as

e(X , t) := γcum − γχ. (14)

The material under consideration is assumed to be characterized by the Helmholtz free energy density

function of the following arguments

Ψ = Ψ̃(E∼
e
GL
, e,K , α), (15)

in terms of the elastic Green-Lagrange strain tensor E∼
e
GL

, the relative plastic strain e, the gradient of

the microslip variable K and the internal hardening variable α. The Helmholtz free energy density

function is taken partly as a quadratic potential in the form:

ρ0Ψ̃(E∼
e
GL
, e,K , α) =

1

2
JpE∼

e
GL

: Λ
≈

: E∼
e
GL

+
1

2
Hχe

2 +
1

2
K ·A∼ ·K + ρ0Ψ̃p(α), (16)

where Λ
≈

is the fourth-order tensor of elastic moduli. In the micromorphic approach, two additional

material parameters are introduced, namely the coupling modulus Hχ and the higher-order micro-

morphic stiffness A∼ .

The Clausius-Duhem inequality takes the form(
JpΠ∼

e−ρ0
∂Ψ̃

∂E∼
e
GL

)
: Ė∼

e
GL−

(
S+ρ0

∂Ψ̃

∂e

)
ė+

(
M −ρ0

∂Ψ̃

∂K

)
K̇ +JpΠ∼

M : (Ḟ∼
p·F∼ p−1)+Sγ̇cum+Xα̇ ≥ 0,

(17)

from which the following state laws are adopted:

Π∼
e = ρ#

∂Ψ̃

∂E∼
e
GL

S = −ρ0
∂Ψ̃

∂e
M = ρ0

∂Ψ̃

∂K
, X = −ρ0

∂Ψ̃

∂α
, (18)

where X is the thermodynamic force associated with internal hardening variable α. The Piola stress135

tensor with respect to the intermediate configuration is Π∼
e = JeF∼

e−1 · σ∼ · F∼ e−T .

Moreover, the specific quadratic form of the potential (16) then leads to the following relations:

Π∼
e = Λ

≈
: E∼

e
GL
, S = −Hχe = −Hχ(γcum − γχ), M = A∼ ·K . (19)

Additionally, partial differential equation connecting γχ and γcum follows from the previous state laws

and the balance equation in (12) as

γχ −
A

Hχ
4X γχ = γcum, (20)

7



where 4X stands for the Laplace operator with respect to the reference configuration.

The residual dissipation inequality takes the form

Dres = JpΠ∼
M : (Ḟ∼

p · F∼ p−1) + Sγ̇cum +Xα̇ =

N∑
r=1

τ rγ̇r + Sγ̇cum +Xα̇ ≥ 0, (21)

after consideration of (8) and of plastic incompressibility. The dissipation rate form suggests intro-

ducing the following generalized Schmid yield function:

fr = |τ r|+ S − τ rc = |τ r| − (τ rc − S), with Xr = τ rc , (22)

which leads to a yield function of the form

fr = |τ r| − (τ rc − S) = |τ r| − (τ rc −DivM ), (23)

once the generalized static balance law (12) is taken into account. In that way, the generalized stress

S in the previous equation results in an enhancement of the hardening law and can be regarded as

a source of isotropic hardening (or softening). For isotropic and cubic materials, the second-order

tensor A∼ = A1∼ involves a single generalized modulus A which is assumed to be constant in space thus

leading to the expression of the yield function:

fr = |τ r| − (τ rc −ADiv(Grad γχ)) = |τ r| − (τ rc −A4X γχ). (24)

This generalized yield function is then inserted into the flow rule (7), taking care of the sign of the

threshold function, to compute the plastic slip rate of each slip system.

In this work, the micromorphic model is used to derive the scaling laws for the monotonic microwire140

torsion tests.

3.2. Lagrange multiplier-based model

The Lagrange multiplier-based model was proposed by Fortin and Glowinski (1983) and suc-

cessfully implemented in (Zhang et al., 2018; Scherer et al., 2020). In this section, the Lagrange

multiplier-based model presented in (Scherer et al., 2020) is summarized. The Lagrange multiplier λ

is introduced to enforce the strict equality between γcum and γχ in order to transform the previous

micromorphic model into a strain gradient crystal plasticity model. It replaces the penalty coeffi-

cient represented by the coupling modulus Hχ of the micromorphic model summarized in section 3.1.

Therefore, the set of degrees of freedom (DOF) is given by

DOF = {u , γχ, λ}. (25)

It turns out that the free energy density function in (15) becomes a Lagrangian function L0.

More specifically speaking, the material under consideration is assumed to be characterized by the

Lagrangian function L0(E∼
e
GL
, e,K , λ, α), in terms of the Green-Lagrange strain tensor E∼

e
GL

, the

relative plastic strain e, the gradient of the microslip variable K , the Lagrange multiplier λ, which

8



is treated as an additional degree of freedom and the internal hardening variable α. The considered

form of the Lagrangian function is

ρ0L0(E∼
e
GL
, e,K , λ, α) =

1

2
JpE∼

e
GL

: Λ
≈

: E∼
e
GL

+
1

2
µχe

2 +
1

2
K ·A∼ ·K + λe+ ρ0Ψ̃p(α), (26)

where µχ is a Lagrangian penalty modulus. The Clausius-Duhem inequality then takes the form(
JpΠ∼

e − ρ0
∂L0

∂E∼
e
GL

)
: Ė∼

e
GL −

(
S + ρ0

∂L0

∂e

)
ė+

(
M − ρ0

∂L0

∂K

)
K̇ +

+JpΠ∼
M : (Ḟ∼

p · F∼ p−1) + Sγ̇cum + ρ0
∂L0

∂α
α̇ ≥ 0. (27)

This gives rise to the following state laws:

Π∼
e = ρ#

∂L0

∂E∼
e
GL

S = −ρ0
∂L0

∂e
M = ρ0

∂L0

∂K
, X = −ρ0

∂L0

∂α
. (28)

Furthermore, the specific quadratic form of the Lagrangian (26) then leads to the following relations

Π∼
e = Λ

≈
: E∼

e
GL
, S = λ− µχ(γcum − γχ), M = A∼ ·K . (29)

The residual dissipation has the same form as (21) and leads to the introduction of the following

generalized Schmid yield function:

fr = |τ r|+ S − τ rc = |τ r| − (τ rc − S) = |τ r| − (τ rc − λ+ µχ(γcum − γχ)). (30)

Again, this generalized yield function can be inserted into the flow rule (7) to evaluate the plastic slip

rate of each slip system. The penalty parameter µχ is similar to the micromorphic penalization term

Hχ but bears a different meaning. In simulations, the parameter µχ can take a much lower value than145

Hχ and provides additional coercivity.

In the present work, the Lagrange multiplier-based model is used to compare the size effects

predicted by the CurlF p model because the CurlF p model is a strain gradient plasticity model and

thus should be compared more directly to the Lagrange multiplier-based model.

3.3. Dislocation density-based hardening150

The strain hardening behavior relies on a dislocation density-based hardening model, which takes

dislocation interactions into account. Following the work of Kubin et al. (2008), the rate of the critical

resolved shear stress τ rc is related to the scalar dislocation densities %u according to

τ rc = τ0 + µ

√√√√ N∑
u=1

hru%u, (31)

where τ0 is the initial critical resolved shear stress, µ is the shear modulus and hru is the interaction

matrix describing long-range interaction between dislocations. Moreover, %u is the non-dimensional

dislocation density such that %u/b2 = ρu, with ρu as the usual SSD density, i.e. the length of dislocation
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lines per unit volume with b denoting the norm of the dislocation Burgers vector b . The following

equation gives the evolution of the dislocation density

%̇r = |γ̇r|


√∑N

u=1a
ru%u

κ
−Gc%r

 . (32)

The first term in the previous equation corresponds to dislocation multiplication, whereas the second

term accounts for dislocation annihilation. The dislocation interaction is described by the matrix

aru, κ is a constant material parameter and Gc is the critical distance controlling the annihilation

of dislocations with opposite signs. The structure of the matrices hru and aru is described in (Ling

et al., 2018).155

The part of the free energy due to the internal hardening variable is assumed to be of the form

(Abrivard et al., 2012):

ρ0Ψ̃p(αr) = µξ

N∑
r=1

1

2
(αr)2, (33)

where ξ is a constant approximately equal to 0.3. The dissipation due to the internal hardening

variable αr in (17) on each slip system r involves thermodynamic force given by

Xr = −ρ0
∂Ψ̃p

∂αr
= −µξαr. (34)

Moreover, it is assumed that the internal hardening variable αr depends on the SSDs as follows:

αr =

√√√√ N∑
u=1

hru%u. (35)

4. CurlF p gradient crystal plasticity theory

4.1. CurlF p model

In this section, the gradient plasticity theory based on the complete dislocation density tensor

elaborated in (Kaiser and Menzel, 2019b) is briefly summarized. The CurlF p framework proposed by

Kaiser and Menzel (2019b) relies on the interpretation of incompatible plastic deformation processes in160

terms of the dislocation density tensor. The model formulation is based on introducing the dislocation

density tensor as an argument of the free energy density function and assumes an extended non-local

form of the dissipation inequality as proposed by Polizzotto and Borino (1998).

The dislocation density tensor (Steinmann and Stein, 1996; Acharya and Bassani, 2000; Cermelli

and Gurtin, 2001; Liebe et al., 2003) is defined by

D∼ = CurlT (F∼
p). (36)

The material under consideration is assumed to be characterized by a free energy density function

given as

Ψ = Ψ̃(F∼ ,F∼
p,D∼ , α), (37)
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with α denoting a scalar-valued internal variable, which may be interpreted as a measure of the

cumulative plastic strain. Moreover, it is assumed that the gradient-enhanced energy density function

is additively decomposed as

ρ0Ψ̃ = ρ0Ψ̃e(F∼ ,F∼
p) + ρ0Ψ̃g(D∼ ) + ρ0Ψ̃p(α), (38)

where Ψ̃e, Ψ̃g and Ψ̃p are the elastic contribution, the energy contribution due to the gradient effect and

the energy contribution due to the internal hardening variable, respectively. The energy contribution

Ψ̃g is expressed as a quadratic function

ρ0Ψ̃g(D∼ ) = HDD∼ : D∼ , (39)

where HD is a material parameter proposed in (Kaiser and Menzel, 2019b), which can beinterpreted

as a characteristic length scale parameter. The part of the free energy due to the hardening variable

α is chosen as

ρ0Ψ̃p(α) = τ0α+
(τ∞ − τ0)2

H0
ln

(
cosh

(
H0α

τ∞ − τ0

))
, (40)

where the material parameters τ∞ and H0 are the saturation strength and the initial hardening rate,

respectively. The extended form the dissipation inequality is

Dres = JpP∼ : Ḟ∼ −
(
ρ0
∂Ψ̃

∂F∼
: Ḟ∼ + ρ0

∂Ψ̃

∂F∼
p : Ḟ∼

p + ρ0
∂Ψ̃

∂D∼
: Ḋ∼ + ρ0

∂Ψ̃

∂α
: α̇

)
+ P0 ≥ 0, (41)

with P0 denoting the non-locality residual. The first Piola–Kirchhoff stress tensor is given by

P∼ = ρ#
∂Ψ̃

∂F∼
. (42)

The reduced form of the dissipation inequality

Dres = JpΠ∼
M : (Ḟ∼

p · F∼ p−1) + Ξ∼ : Ḋ∼ +Xα̇+ P0 ≥ 0. (43)

The thermodynamic force associated with the internal hardening variable is defined as

X = −ρ0
∂Ψ̃p

∂α
= −

(
τ0 + (τ∞ − τ0)tanh

(
H0α

τ∞ − τ0

))
, (44)

and the energetic dual to the dislocation density tensor is

Ξ∼ = −ρ0
∂Ψ̃

∂D∼
. (45)

Moreover, the evaluation of (45) for the specific form of the energy contribution (39) yields

Ξ∼ = −2HDCurlT (F∼
p). (46)

By considering an insulation condition P0 = 0 as in (Kaiser and Menzel, 2019a), the reduced form of

the dissipation inequality may be written in terms of

Dres = JpM∼ : (Ḟ∼
p · F∼ p−1) +Xα̇ ≥ 0, (47)
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giving rise to a balance equation for the generalized stress tensor as

JpM∼ = JpΠ∼
M + CurlT (Ξ∼) · F∼ pT , in B0

dis. (48)

The generalized stress tensor M∼ consists of the Mandel stress tensor Π∼
M defined in the intermediate

configuration and a back-stress term, which is closely related to incompatibilities in the plastic defor-

mation field such that when gradient effects are neglected, M∼ reduces to Π∼
M . The generalized stress

tensor is identified as the driving force for plastic deformation processes based on (48). The yield

function and the evolution equations are accordingly formulated in terms of the generalized stress

tensor. Moreover, the non-ambiguous constitutive boundary condition associated with (48) reads

Ξ∼ · Spn(N ) · F∼ pT = 0, on ∂B0
dis,ext, (49)

where N denotes the outward unit normal vector with respect to the considered boundary ∂B0. The

detailed derivation of (48) and (49) can be found in (Kaiser and Menzel, 2019b). The generalized stress165

tensor in (48) and the constitutive boundary condition in (49) are originally derived on the domain

B0
dis, where dissipative processes occur, and on the corresponding external boundary ∂B0

dis,ext.

In addition, the relative Mandel stress tensor is introduced as a primary field variable

M∼
(rel)

= M∼ −Π∼
M , (50)

so that (48) can be written as

JpM∼
(rel) − CurlT (Ξ∼) · F∼ pT = 0, in B0

dis. (51)

Substituting (46) in (51) yields the specific form of the relative Mandel stress tensor

JpM∼
(rel)

= −2HDCurlT (CurlT (F∼
p)) · F∼ p

T , (52)

which is responsible for the back-stress associated with the kinematic hardening. Additionally, field

variable θ∼
p is introduced which is coupled to F∼

p in terms of an L2-projection as follows:

0 =

∫
B0

ηθ
p

: (F∼
p − θ∼p)dV, (53)

where ηθ
p

is the corresponding test function.

In order to identify the differences between the Lagrange multiplier-based model and the CurlF p

model, the constitutive equations of both models are summarized in Appendix A. Moreover, in the

present work, the GND density distribution in monotonic and cyclic loading of microwires using

the Lagrange multiplier-based model is calculated from the Euclidean norm of CurlT (F∼
p). A post-

processing technique is used to evaluate the CurlT (F∼
p) (see also, Busso et al. (2000); Abrivard et al.

(2012)). The first step in determining the CurlT (F∼
p) is to calculate the gradient of F∼

p at the integra-

tion points. To this end, the known values of F∼
p at the integration points are extrapolated to nodes

using the shape functions of the elements. The gradients of F∼
p at the nodes can next be obtained

from the derivatives of the shape functions. Finally, known nodal values of the gradient of F∼
p are
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interpolated back to the integration points. The Euclidean norm of CurlT (F∼
p) provides an effective

measure of GND density as follows:

||CurlT (F∼
p)|| = b

N∑
r=1

ρrG, (54)

where || • || denotes the Euclidean norm of •.

4.2. Equivalence of higher-order modulus A and material parameter HD in single-slip170

The higher-order modulus A from the reduced-order model, refer (24), and material parameter

HD from the CurlF p theory, refer (46), bear similar physical interpretations. This is demonstrated

in this section for a simplified two-dimensional single-slip problem.

A single crystal with a single-slip system is considered. The slip direction m and the slip plane

normal n are

m = (1, 0, 0), n = (0, 1, 0). (55)

Consider a situation where only one slip system is active. In the absence of lattice distortion and

rotation, the plastic part of the deformation gradient F∼
p takes the form

F∼
p = 1∼ + γ (m ⊗ n ), (56)

[F∼
p]ij =


1 γ 0

0 1 0

0 0 1

 . (57)

The dislocation density tensor [D∼ ]ij = [CurlT (F∼
p)]ij is given by

[D∼ ]ij =


∂Fp

13

∂X2
− ∂Fp

12

∂X3

∂Fp
11

∂X3
− ∂Fp

13

∂X1

∂Fp
12

∂X1
− ∂Fp

11

∂X2

∂Fp
23

∂X2
− ∂Fp

22

∂X3

∂Fp
21

∂X3
− ∂Fp

23

∂X1

∂Fp
22

∂X1
− ∂Fp

21

∂X2

∂Fp
33

∂X2
− ∂Fp

32

∂X3

∂Fp
31

∂X3
− ∂Fp

33

∂X1

∂Fp
32

∂X1
− ∂Fp

31

∂X2

 . (58)

Therefore, for the 2-dimensional case and the specific simple shear problem studied,

[D∼ ]ij =


0 0 ∂γ

∂X1

0 0 0

0 0 0

 . (59)

The only active component of the dislocation density tensor is

D13 =
∂γ

∂X1
. (60)

The equivalence of higher-order modulus A and the material parameter HD from the CurlF p model

can be derived as follows. For a crystal deforming under single-slip conditions, the plastic deformation

rate is given by

Ḟ∼
p = γ̇(m ⊗ n ). (61)
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Inserting (50) in (47) for M∼ gives

(τ + JpM∼
(rel)

: m ⊗ n )γ̇ +Xα̇ ≥ 0. (62)

In absence of hardening variable, α, for simplicity, the generalized Schmid law for the CurlF p model,

in the rate-independent case, can be defined as

|τ − x| = τc, with x = −JpM∼
(rel)

: m ⊗ n . (63)

From the specific form of the generalized stress tensor M∼
(rel)

given by (52), the back-stress x can be

written as

x = 2HDCurlT (CurlT (F∼
p)) · F∼ p

T : m ⊗ n , (64)

and

[CurlT (CurlT (F∼
p))]ij =


F p12,12 + F p13,13 F p11,21 + F p13,23 F p11,31 + F p12,32

F p22,12 + F p23,13 F p21,21 + F p23,23 F p21,31 + F p22,32

F p32,12 + F p33,13 F p31,21 + F p33,23 F p31,31 + F p32,32



−


F p11,22 + F p11,33 F p12,11 + F p12,33 F p13,11 + F p13,22

F p21,22 + F p21,33 F p22,11 + F p22,33 F p23,11 + F p23,22

F p31,22 + F p31,33 F p32,11 + F p32,33 F p33,11 + F p33,22

 . (65)

For the particular single-slip problem considered, the back-stress takes the form

2HDCurlT (CurlT (F∼
p)) · F∼ p

T : m ⊗ n = −2HDγ,11 (66)

Substituting (66) in (63) leads to another form of the generalized Schmid law

|τ + 2HDγ,11 | = τc. (67)

This equation clearly shows the emerging kinematic hardening component proportional to the second

gradient of slip in the slip direction.175

On the other hand, the generalized Schmid law for a single-slip problem with the Lagrange

multiplier-based model can be written from (30) in the rate-independent case as

|τ |+ S = τc. (68)

Recalling the balance law in (12), the generalized Schmid law in (68) can be written as

|τ |+ DivM = τc. (69)

Making use of (19) in the previous equation leads to another form of the generalized Schmid law

|τ |+A(DivK ) = τc, (70)

A(DivK ) = ADiv

(
∂γχ
∂X1

m +
∂γχ
∂X2

n

)
= A

∂2γχ
∂X2

2

= Aγ,11 . (71)
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Finally, the form of the generalized Schmid law in (70) can be written as

|τ |+Aγ,11 = τc. (72)

This equation clearly shows the emerging isotropic hardening component proportional to the second

gradient of slip in the slip direction. From (67) and (72), it is concluded that the higher-order moduli

A and HD can be related to each other for monotonic loading such that τ > 0 and τ + 2HDγ,11> 0.

In this instance, we can identify A = 2HD. The Lagrange multiplier-based model and CurlF p model

are equivalent in this specific situation. It will not be the case anymore, in general, under multi-slip180

conditions and with consideration of the different hardening laws. Evidencing the importance of these

differences is the subject of the following sections for monotonic and cyclic loading conditions.

In the presence of linear hardening with modulus H, it is possible to derive from (70) the definition

of a characteristic length scale

` =
√
A/|H|, (73)

as demonstrated in (Ling et al., 2018; Scherer et al., 2019). For more general hardening laws, a similar

characteristic length scale can be defined as discussed in section 5.3.1.

5. Application to microwire torsion tests185

The torsion of a single crystal microwire is characterized by two types of gradients: gradients along

the radial direction from the center to outer surface and gradients along the circumferential direction as

observed by Nouailhas and Cailletaud (1995). More recently, experimental investigations of microwire

torsion tests on single crystal copper under monotonic loading were performed by Horstemeyer et al.

(2002) with the [110] crystallographic direction being aligned with the axis of rotation. An observation190

of the kinematics of the deformation fields at the outer surface of the specimen was made. A wavy

deformation pattern of sinusoidal waves comprising of four periods was observed and believed to be

the result of four-fold symmetry of the slip plane around the circumference. Moreover, experimental

assessments of polycrystalline microwire torsion tests with different specimen diameters and same

grain size to study the size effects under monotonic loading were performed in (Liu et al., 2012; Guo195

et al., 2017). Furthermore, the experimental studies of size effects, hysteresis loops, Bauschinger

effects, and anomalous plastic recovery in polycrystalline cyclic torsion tests can be found in (Liu

et al., 2013; Guo et al., 2020). From a numerical point of view, size effects predictions in monotonic

and cyclic loading of polycrystalline microwires were performed in (Bardella and Panteghini, 2015)

using a strain gradient plasticity approach that includes the plastic spin in the constitutive framework200

called distortion gradient plasticity. It was observed that this theory is satisfactory to capture the

size effects in monotonic loading. However, it leads to anomalous cyclic behavior in the case of cyclic

loading.

In this section, the size effect predicted by the Lagrange multiplier-based model for monotonic or

cyclic microwire torsion tests is compared to the predictions by the CurlF p model taken from Kaiser205
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and Menzel (2019a). The relation A = 2HD is used in the simulations, following the identification

presented in section 4.2.

5.1. Problem setup

The simulations are performed using single crystal cylindrical microwires of height 80 mm and

three different radii R = 20 mm, 10 mm and 5 mm, that are meshed with reduced integration 20 node210

brick elements (C3D20R). Note that the simulation results are not affected by the absolute values of

the wire dimensions but rather by the ratio of these radii to the characteristic length scale `.

The applied boundary conditions and meshed geometry are shown in Fig 2. The geometry is

discretized with 3600 elements for monotonic loading and 450 elements for cyclic loading. The same

finite element meshes as in (Kaiser and Menzel, 2019a) are used for the simulations performed with215

the Lagrange multiplier-based model in order to allow for direct comparison. The latter model was

recently used to simulate torsion tests of single crystals with various orientations and finer meshes in

(Scherer et al., 2020). Isotropic elasticity is considered. The bottom face of the microwire is clamped,

while the top surface undergoes a rigid body rotation around the wire axis. The lateral faces are kept

traction-free and free of generalized forces, which means that T = 0 and M = 0 in (13). The relative220

rotation between the upper and lower face is linearly increased to an angle of 45◦ for monotonic loading.

For the cyclic loading test, the following conditions are enforced: The relative rotation between the

upper and lower faces is first linearly increased to an angle value of 45◦. Next, the relative rotation

is linearly decreased to −45◦. Finally, the loading is again reversed, and simulation is stopped when

a relative rotation of 45◦ is reached. More cycles can be considered with the same relative rotation225

amplitudes.

The orientation of the single crystal considered is such that the [001] crystal direction is aligned

with the wire axis. The basis vectors of the Cartesian coordinate system are parallel to the cubic

lattice unit cell vectors:

e 1 = [100] e 2 = [010] e 3 = [001],

and are indicated in Fig. 2.

5.2. Identification of material parameters

The FCC crystal possesses the usual 12 slip systems with 6 slip directions <110> and 4 slip planes

{111}.230

The material parameters of the Face-Centered Cubic (FCC) single crystal for the dislocation-

density based model presented in section 3.3 are now calibrated based on simple tension and simple

shear predictions obtained on a single volume element with the constitutive law considered in (Kaiser

and Menzel, 2019b) and recalled in section 4.1. Such a calibration is necessary because the two models

compared in the present work rely on different hardening rules. The CulF p model includes a phe-235

nomenological hardening law with internal variables α whereas the reduced-order model incorporates
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(a) (b)

Fig. 2: Microwire torsion: (a) boundary conditions (b) top view of the finite element mesh with R denoting the radius

of the microwire.

Table 1: Numerical values of material parameters used for the simulation of microwire torsion tests in the reduced-order

model and by Kaiser and Menzel (2019a) in the CurlF p model.

E τ0 m γ̇0 µ b

60.8 MPa 60 MPa 10 6.0 × 107 s−1 23 400 MPa 0.286 nm

Gc κ %r0 h0 h1 h2

100.5 10.92 5.38× 10−11 1.0 0 0

h3 h4 h5 aru(r 6= u) auu µχ

0 0 0 1 0 103 MPa

A τ∞ H0 HD

104, 2× 104 MPa mm2 110 MPa 540 5× 103, 104 MPa mm2

evolution equations for dislocation densities. The calibrated material parameters used in the numer-

ical simulations and the material parameters used in the CurlF p model are summarized in Table 1.

The viscosity parameters are chosen in such a way that no significant rate–dependence of the results

is observed in the range of strain rates considered in this work. The initial adimensional dislocation240

density is denoted by %r0 and assumed to be the same for all slip systems.

The corresponding tensile and shear stress-strain response of a <001> FCC single crystal is pro-

vided for both models in Fig. 3. No exact match is observed in Fig. 3 because the hardening functions

are very different in both models. Only qualitative agreement is reached for the tensile and shear

curves for the considered crystal orientation, which is sufficient for the comparisons performed in the245

sequel for torsion of bars.
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Fig. 3: Constitutive response of the classical crystal plasticity formulation (section 2.2) and the material model considered

in (Kaiser and Menzel, 2019b) for a <001> FCC single crystal and material parameters according to Table 1: (a) tensile

test, (b) shear test. Cauchy stress components are plotted, the axial and shear strains correspond to components F33−1

and F12 of the deformation gradient.

5.3. Results and discussion

The characteristic length scale ` considered in the simulations is defined as ` =
√
A/|H| , cf.

section 4.2, (73). The hardening modulus H varies during straining, and an approximate expression

of the characteristic length scale is chosen to normalize the presented results. For that purpose, the250

initial equivalent linear hardening modulus for the tensile test is selected. Its value is given by the

ratio of resolved shear stress τs and shear strain γs for one activated slip system at the beginning

of its activation as proposed in Ling (2017). In the present case, the estimated H value for <001>

crystal orientation is 3100 MPa. It is not possible to derive an analytical expression of the relevant

characteristic length scale emerging in the torsion problem. That is why the proposed estimate is255

chosen.

In the following description of the results, the SSD density is defined as the sum of the 12 individual

dislocations densities. The GND density is computed as the norm of the dislocation density tensor

divided by b. In the CurlF p model this variable is available in the code whereas a post-processing is

needed to compute the curl of plastic deformation in the case of the Lagrange multiplier-based model.260

5.3.1. Comparison of predicted size effects

The comparison of the size effects predicted by the Lagrange multiplier-based model and the

CurlF p model for three different values of the radius of the microwire under monotonic torsio loading

using higher-order modulus A = 20000 MPa mm2 is shown in Fig. 4a. The considered single crystal

microwire is subjected to monotonic torsion loading and oriented such that the wire axis is parallel

to ithe [001] crystal direction. The size-dependent curves are presented using the normalized torque
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T/R3 as a function of surface strain γR defined as

γR = kR, (74)

where k is the applied twist per unit length θ/L. Note that this definition of γR is only an approxi-

mation of the actual slip value along the circumference since the plastic activity is not constant along

the circumference for a cubic single crystal.

This feature can be observed in Fig. 5 which shows the cumulative plastic strain γcum fields265

plotted in the reference configuration. The slip activity is maximal at four locations corresponding

to the direction [110] and [11̄0]. Fig. 4a shows that for the radii R = 20 mm and R = 10 mm, the

torque vs. surface strain responses predicted by both models are almost the same, while for the radius

R = 5 mm, the Lagrange multiplier-based model leads to a slightly harder response.

The cumulative plastic strain and dislocation density fields shown next are based on a finite el-270

ement discretization with 10000 elements for a better resolution. Such fine mesh simulations could

be performed only with the Lagrange multiplier-based model. The computational efficiency of the

Lagrange multiplier-based model in terms of CPU time allows faster computation of size effect even

with finer mesh discretization. Fig. 6 and 7 respectively show the spatial distributions of the SSD and

GND density for the three considered radii. It is observed that the dislocation density multiplication275

starts at the free surface of the microwire and is driven towards the center. During the deformation

process, the evolution of the SSD density is due to the dislocation generation and annihilation mech-

anism. The initial dislocation density ρr(= %u/b2) is assumed to be 6.5 × 108 m−2 and chosen the

same for all slip systems. Distinct four-fold patterns of the SSD density distribution are observed

for all three radii of the microwire. On the other hand, the GND density distribution shows distinct280

four-fold patterns for the radii R = 5 mm and R = 10 mm, while it shows more localized distribution

for R = 20 mm making the four-fold symmetry of FCC single-crystal almost disappear.

The SSD and GND density distributions at different stages of the relative rotation are shown

in Fig. 8 and 9, respectively. At the initial stage of the deformation, the maximum SSD density is

observed at four locations corresponding to the [110] crystal direction (see Fig. 8a). However, as the285

deformation progresses, the maximal dislocation density locations are observed at the corresponding

[100] crystal direction as shown in Fig. 8c for the relative rotation of 22.5◦. With the deformation, the

difference between the magnitude of the maximal and minimal increment of the cumulative plastic

strain,
∑N
r=1 |4γr|, along the circumference decreases and the field becomes almost homogeneous.

This may explain the shift in the maximal SSD density locations with the deformation. On the other290

hand, at the initial stage of the relative rotation, the GND density is maximal at four locations around

the directions [100] (see Fig. 9a) and remains at the corresponding [100] crystal direction with further

increase in the relative rotation (see Fig. 9c). Moreover, it is observed that there is a slight evolution

of the GND density field with more localized distribution compared to the SSD density field.

Fig. 10a and 10b show the profiles of the cumulative plastic strain γcum for three different radii295

along the circumferential and radial directions, respectively. For the given relative rotation angle,
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Fig. 4: Comparison of normalized torque vs. surface strain curves (<001> crystal orientation, R = 10 mm), for the

Lagrange multiplier-based model and the CurlF p model: (a) monotonic loading, and (b) cyclic loading.

[100]

[010]

[1
10
]

[001]
0

0.40

0.03

0.07

0.10

0.14

0.18

0.21

0.25

0.29

0.32

0.36

R = 20 mm

0

0.16

0.01

0.02

0.04

0.05

0.07

0.08

0.10

0.11

0.13

0.14

R = 10 mm

0

0.060

0.005

0.010

0.016

0.021

0.027

0.032

0.038

0.043

0.049

0.054

R = 5 mm

Fig. 5: Cumulative plastic strain field in <001> FCC single crystal predicted by the Lagrange multiplier-based model

with A = 20000 MPa mm and a finite element discretization featuring 10000 elements. The results for an applied

relative rotation of 45◦ between the upper and lower faces are shown on the undeformed configuration.

distinct four-fold patterns of the plastic strain field can be observed for R = 20 mm and R = 10 mm.

The plastic strain field is smoother along the circumference for R = 5 mm because the smaller radius

gives a stiffer response and limits the strain localization in these zones. The radial distributions in

Fig. 10b are almost linear.300

The comparison of the size effect predicted by the Lagrange multiplier-based model and the CurlF p

model in the case of cyclic loading conditions is shown in Fig. 4b. These simulations were performed

for two values of the higher-order modulus, namely A = 10000 MPa mm2 and 20000 MPa mm2. The

ratio A = 2HD is kept constant in both cases to allow for the comparison of both models. The

Lagrange multiplier-based model predicts isotropic hardening as shown in Fig. 4b. In contrast, the305

higher-order stresses act as a back-stress in the CurlF p model, resulting in kinematic hardening. Fig.

11a shows the saturation of cyclic curves after 5 cycles using classical crystal plasticity model with

dislocation density-based hardening. In contrast, the gradient effect associated with parameter A
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based model with A = 20000 MPa mm2 and a finite element discretization featuring 10000 elements. The results for an

applied relative rotation of 45◦ between the upper and lower faces are shown on the undeformed configuration.
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Fig. 7: GND density distribution in FCC single crystal (<100> crystal orientation) predicted by the Lagrange multiplier-

based model with A = 20000 MPa mm2 and a finite element discretization featuring 10000 elements. The results are

shown on the undeformed configuration for an applied relative rotation of 45◦ between the upper and lower faces.
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Fig. 8: SSD density distribution in FCC single crystal (<100> crystal orientation, R = 10 mm) predicted by the

Lagrange multiplier-based model with A = 20000 MPa mm2 and a finite element discretization featuring 10000 elements

at an applied relative rotation of (a) 4.5◦ (b) 9◦ and (c) 22.5◦ shown on the undeformed configuration.
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Fig. 9: GND density distribution in FCC single crystal (<100> crystal orientation, R = 10 mm) predicted by the

Lagrange multiplier-based model with A = 20000 MPa mm2 at an applied relative rotation of (a) 4.5◦ (b) 9◦ and (c)

22.5◦ shown on the undeformed configuration.
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Fig. 10: Cumulative plastic strain γcum profiles predicted by a Lagrange multiplier-based model along the (a) cir-

cumferential and (b) radial direction of the microwire for monotonic loading and for three radii of microwire using

A=20000 MPa mm2. The radial distance from the center of the specimen is denoted by x and the radius of the mi-

crowire by R.
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Fig. 11: Comparison of normalized torque vs. surface strain curves for <001> crystal orientation and for cyclic loading

using (a) a classical crystal plasticity formulation according to section 2.2, and (b) Lagrange multiplier-based model

using A = 20000 MPa mm2. The microwire of radius R = 10 mm discretized using 3600 finite elements.

[100]

[010]

[1
10
]

[001]
6.3e+12

5.5e+14

5.5e+13

1.0e+14

1.5e+14

2.0e+14

2.5e+14

3.0e+14

3.5e+14

4.0e+14

4.5e+14

5.0e+14

Cycle 1

1.7e+13

8.3e+14

9.1e+13

1.6e+14

2.4e+14

3.1e+14

3.9e+14

4.6e+14

5.3e+14

6.1e+14

6.8e+14

7.6e+14

Cycle 2

2.0e+13

9.7e+14

1.1e+14

1.9e+14

2.8e+14

3.7e+14

4.5e+14

5.4e+14

6.3e+14

7.1e+14

8.0e+14

8.9e+14

Cycle 3

Fig. 12: SSD density distribution in FCC single crystal bar under cyclic torsion (<100> crystal orientation, R = 10 mm,

A = 20000 MPa mm2) predicted by the Lagrange multiplier-based model and a finite element discretization featuring

3600 elements.
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Fig. 13: GND density distribution in FCC single crystal (<100> crystal orientation, R = 10 mm, A = 20000 MPa mm2)

predicted by the Lagrange multiplier-based model and a finite element discretization featuring 3600 elements.
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Fig. 14: Cumulative plastic strain γcum distribution in FCC single crystal bar under cyclic torsion (<100> crystal

orientation, R = 10 mm) predicted by the Lagrange multiplier-based model with A = 20000 MPamm2 and a finite

element discretization featuring 3600 elements.

leads to strong additional isotropic hardening as depicted in Fig. 11b with no apparent saturation.

The cumulative plastic strain and dislocation density fields shown next are plotted for the microwire310

of radius R = 10 mm and based on a finite element discretization with 3600 elements. Fig. 12 and

13 show the SSD and GND density distribution over the cross section at the end of each cycle. As

the deformation progresses, the dislocation density significantly increases with the plastic strain, and

SSD density gets much larger than GND density. In particular, the SSD and GND densities increase

from an initial value of 6.5× 108 m−2 to 9.7× 1014 m−2 and from 0 to 4.9× 1011 m−2, respectively at315

the end of cycle 3. In addition, the dislocation density distribution maintains the distinct four-fold

symmetry pattern even at the end of cycle 3. After cycling, the GND density field does not display

clear patterns any more, see Fig. 13. A finer mesh would be necessary for a better resolutin of the

gradients.

The plastic strain distribution and profiles along the circumferential and radial directions for cyclic320

loading are shown in Fig. 14 and 15. Accumulation of plastic deformation during cycling in the four

zones of favored plastic slip leads to increased gradient values and subsequent additional hardening,

thus explaining the cyclic hardening of Fig. 11b. With further increase in number of cycles, the

cumulative plastic strain increases and becomes almost homogeneous along the circumference, making

the four-fold symmetry of FCC single crystal almost disappear as shown in Fig. 14 and 15a. This may325

explain the trend to some saturation of cyclic hardening in Fig. 11b. It is observed that the magnitude

of the plastic strain field increases in the radial direction with an increasing number of cycles as shown

in Fig. 15b.

5.3.2. Scaling law

In this section, the scaling behavior is studied for the micromorphic model presented in section 3.1330

and the Lagrange multiplier-based model presented in section 3.2. The dependence of the normalized

torque on theR/` is analyzed for the monotonic microwire torsion tests. The simulations are performed

for several radii of the microwire ranging from R = 2 mm to R = 30 mm and using the value
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Fig. 15: Cumulative plastic strain γcum variation along the (a) circumferential and (b) radial direction of the microwire

for cyclic loading using Lagrange multiplier-based model (A=20000 MPa mm2, R = 10 mm, and a finite element

discretization with 3600 elements). The radial distance from the center of the specimen is denoted by x and the radius

of the microwire by R.

of the higher-order modulus A = 20000 MPa mm2. The scaling laws in the form of the power law

T/R3 ∝ (R/`)n for microwire torsion tests characterizing the effect of the R/` ratio on the normalized335

torque T/R3 are shown in Fig 16a. The characteristic length scale ` defined as
√
A/|H| is 2.55 mm.

The log-log plot of the normalized torque values as a function of R/` ratio at a surface strain of

0.01 are plotted in Fig. 16b for the reduced-order micromorphic model using Hχ = 104 MPa and

Hχ = 3 × 104 MPa, and for the Lagrange multiplier-based model using µχ = 103 MPa, respectively.

For lower values of the coupling modulus Hχ the micromorphic model predicts a typical tanh shape340

(Cordero et al., 2010) with saturation for small (R/` < 0.8) and large (R/` > 0.8) values of the R/`

ratio. The slope of the bounded intermediate regime for the micromorphic model using Hχ = 104 MPa

and Hχ = 3×104 MPa is found to be n = −0.6 and n = −0.85, respectively. The Lagrange multiplier-

based model can be considered as a limiting case of a micromorphic model for large values of Hχ,

which leads to a power-law exponent n = −1.0 of asymptotic regime towards zero. In the latter case,345

no saturation is expected.

The power-law exponent n of the micromorphic model depends on the material parameters Hχ

and A, whereas it is independent of material parameters in the Lagrange multiplier-based model.

The critical value of the R/` ratio is defined by the inflection point i of the plot in Fig 16b. The

value of i depends on the coupling modulus Hχ and is found to be 4 and 3 for Hχ = 104 MPa and350

Hχ = 3× 104 MPa, respectively, which represents the size-dependent domain of material response.

6. Conclusion

The objective of the present was to compare the response in torsion at finite deformations of three

size-dependent models recently published in the literature: a gradient crystal plasticity model involving
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Fig. 16: Normalized torque vs. surface strain curves for <001> crystal orientation: (a) influence of the microwire radius

when using a Lagrange multiplier-based model,(b) normalized torque as a function of R/` at a surface strain γR of 0.01

for micromorphic and Lagrange multiplier-based models.

the complete dislocation density tensor by Kaiser and Menzel (2019a), a reduced-order micromorphic355

crystal plasticity model and a Lagrange multiplier-based gradient crystal plasticity model described

in (Scherer et al., 2020). Results previously obtained by Kaiser and Menzel (2019a) were compared to

new simulations carried out with the two other models. A detailed analysis of the evolution of plastic

strain, SSD and GND density fields was provided. The main findings obtained in this contribution

can be summarized as follows:360

1. The size effects predicted by the Lagrange multiplier-based model were found to be in good

agreement with the predictions made by the CurlF p model in the case of monotonic torsion of

a cylindrical bar with axis parallel to [001] crystal direction.

2. Gradient effects tend to reduce the strain heterogeneity which arises in torsion along the cir-

cumference. This effect is predicted by all three models.365

3. Interesting evolutions of the SSD vs GND densities during monotonic torsion were evidenced.

The location of maximal SSD density values was shown to change from < 011 > to < 100 >

positions along the circumference when increasing the twist angle. In contrast the maximal

GND density values remain around < 100 > positions.

4. The Lagrange multiplier-based model induces isotropic hardening in cyclic torsion because it is370

based on the gradient of a scalar-valued cumulative plastic strain variable. This is in contrast

to the kinematic hardening induced by the CurlF p model due to the back-stress resulting from

the action of higher-order stresses. This leads to significantly different responses under cyclic

loading conditions.

5. The analysis of the cyclic torsion tests shows the evolution of plastic slip gradients along the375

circumference with a trend towards more homogeneous distributions for larger cycle numbers

according to the Lagrange multiplier-based model. A significant increase in SSD and GND

26



densities is observed at the end of each cycle compared to previous cycles.

6. The size effects are characterized by power law relationships between the normalized torque

and R/`, with ` being a characteristic length of the model. The reduced micromorphic model380

saturates for small and large values of this ratio. It possesses an intermediate domain with

powers n = −0.6 and = −0.85, which were found for Hχ = 104 MPa and Hχ = 3 × 104 MPa,

respectively. In contrast, the augmented Lagrangian version of the model, which corresponds to

a strict strain gradient plasticity model, predicts no saturation at small R/` ratios and a power

law with n = −1.385

An equivalence between the reduced-order Lagrange multiplier-based model and the CurlF p model

exists in the case of a single-slip under monotonic loading. The CurlF p model has a clear physical

interpretation in terms of the dislocation density tensor in contrast to the reduced-order models, which

incorporate the gradient of cumulative slip in a purely phenomenological way. Reduced-order models

are advantageous from a computational point of view and lead to significantly lower computation390

times in the presented examples. The computational efficiency in terms of CPU time of the Lagrange

multiplier-based model and of the micromorphic model that was studied in this contribution is in-

vestigated in (Scherer et al., 2020). The CurlF p model, which includes 21 DOFs at each node in

three-dimensional settings, is computationally expensive compared to the Lagrange multiplier-based

model, which requires 5 DOFs per node. It has been demonstrated that the CurlF p and reduced-order395

models can deliver similar predictions in terms of hardening and size effects, at least for monotonic

tests. The reduced-order models can therefore be applied for faster evaluation of size effects in struc-

tural computations. More physical understanding can be gained using the full gradient model.

The full gradient and reduced-order models could further be compared in the case of localization

phenomena in crystalline materials as recently explored by Marano et al. (2021). Regularization of400

strain localization phenomena in single crystals such as slip, kink and shear bands was demonstrated

in (Ling et al., 2018).

A limitation of the reduced-order micromorphic and Lagrange multiplier-based formulations pre-

sented in this work is that the gradient terms essentially affect the isotropic hardening and do not

incorporate a size-dependent back-stress, in contrast to full-order micromorphic and the gradient plas-405

ticity models. The simulation of kinematic-type hardening is, in fact, possible with a reduced-order

model using an alternative formulation in which the free energy potential depends on the gradient

of the microslip variable as pointed out in (Forest, 2016; Ling et al., 2018). Another possibility is to

consider the gradient of the equivalent plastic strain instead of the cumulative one. This will cause

size-dependent kinematic hardening effects, as recently demonstrated by Jebahi and Forest (2021).410

Appendix A Summary of constitutive equations in reduced-order and CurlF p models

The constitutive equations used in the reduced-order and the CurlF p models are summarized in

Table 2.
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Table 2: Summary of constitutive equations used in reduced-order and the CurlF p models.

Constitutive equations
Reduced-order model

(Lagrange multiplier-based)
CurlF p model

DOF

(three-dimensional setting)

{u , γχ, λ}

Total DOF per node = 5

{u ,M∼
(rel)

,θ∼
p}

Total DOF per node = 21

Free energy

density function
L0(E∼

e
GL
, e,K , λ, α) Ψ = Ψ̃(F∼ ,F∼

p,D∼ , α)

State laws
Π∼
e = ρ#

∂L0

∂E∼
e

GL

S = −ρ0
∂L0
∂e

M = ρ0
∂L0

∂K X = −ρ0
∂L0
∂α

P∼ = ρ#
∂Ψ̃

∂F∼
Ξ∼ = −ρ0

∂Ψ̃

∂D∼

X = −ρ0
∂Ψ
∂α

Balance laws
DivS∼ = 0 and DivM − S = 0,

∀X ⊂ Ω0

JpM∼ = JpΠ∼
M + Curl(Ξ∼) · F∼

pT = 0,

in B0
dis

Boundary conditions
T = S∼ ·N and M = M ·N ,

∀X ⊂ ∂Ω0

Ξ∼ · Spn(N ) · F∼
pT = 0,

on ∂B0
dis,ext

Residual dissipation

inequality

JpΠ∼
M : (Ḟ∼

p · F∼
p−1) + Sγ̇cum

+Xα̇ ≥ 0

JpΠ∼
M : (Ḟ∼

p · F∼
p−1) + Ξ∼ : Ḋ∼

+Xα̇ ≥ 0

Thermodynamic force

associate with the internal

hardening variable X = −µξ
√∑N

u=1h
ru%u X = −

(
τ0 + (τ∞ − τ0)tanh

(
h0α

τ∞−τ0

))
Material parameters

related to

characteristic length scale A HD
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